

TW4437 2/9/15

T-WALL® RETAINING WALL SYSTEM

LRFD STRUCTURAL DESIGN
CALCULATIONS
FOR 5. FT WIDE
5.50' HIGH TOP UNITS
6.00' HIGH TOP UNITS
6.50' HIGH TOP UNITS

T-WALL PRECAST UNITS

8328-D Traford Lane • Springfield, VA 22152 • 703-913-7858 • Fax: 703-913-7859 E-mail: info@neelco.com • www.neelco.com

Index

0.	Index	Page 1
1.	T-WALL® Rebar Summary Table	Page 2
2.	Notes	Page 3
3.	Discussions - Governing case	Page 4
4.	Top Units Calculations	
	- 5.5x5.0x2.5 STD Top Unit	Page 6
	- 6.0x5.0x2.5 STD Top Unit	Page 21
	- 6.5x5.0x2.5 STD Top Unit	Page 33

T-WALL Rebar Summary Table (TOP UNITS):

In the table below:

H X W X Hstem = HEIGHT (FRONT FACE) X WIDTH X STEM HEIGHT
Only the calculations for the shaded T-wall top units are considered in this package for clarity

Top Units	H-1	TB-1	V-2	S-1	Concrete
HxWxHstem	Bars	Bars	Bars	Bars	(ksi)
		STD TOP U	NITS		
5.0x5.0x2.5	6, #4	4, #5	6, #5	4, #3	5
5.5x5.0x2.5	6, #4	4, #5	6, #5	4, #3	5
6.0x5.0x2.5	6, #4	4, #5	6, #5	4, #3	5
6.5x5.0x2.5	7, #4	4, #5	6, #5	4, #3	5

Notes:

the number of H-1 Bars for Top units can vary

Notes

1. The calculations comply with:

AASHTO LRFD Bridge Design Specifications 2012

The following is a list of the referenced information in the calculations.

Loads: Per AASHTO Section 3

Load factors: Per AASHTO Section 3, Table 3.4.1-1

Resistance factors: Per AASHTO Section 5.5.4.2

Flexural design: Per AASHTO Section 5.7.3.2

Minimum reinforcement design: Per AASHTO Section 5.7.3.3.2

Maximum reinforcement design: Per AASHTO Section 5.7.3.3.1

Shear design: Per AASHTO Section 5.8.3

Service design: Per AASHTO Section 5.7.3.4

Temperature steel requirement design for face and stem: Per AASHTO Section

5.10.8.2

2. T-WALL® units are designed for the following backslope cases:

Case I: Broken BackSlope And Traffic Surcharge,

No traffic barrier and moment slab,

240 psf traffic surcharge Ka = 0.3109 (see Page 4)

Backslope Cases.xlsm - 1.5H 1V Broken

PER AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS

Project No: TW4437

Project Name: I-89 Bridge Decks Rep.

Comments: Backslope Case I: 1.5H:1V broken backslope, max. H = 11.5'

Checked By: KD

GRADING GEOMETRY

0 ft Distance to slope Slope height 3.75 ft Slope horizontal length ft Angle of slope (β') 36.9 deg 9.3 Slope angle (i) (B in AASHTO deg Fig. 3.11.5.8.1-3)

Wall height at the front face h = 11.5 ft

BACKFILL SPECIFICATIONS

Internal friction $\emptyset = 34$ deg Unit weight $\gamma = 120$ pcf Earth pressure coefficient Ka = 0.3109 (Per AASHTO Eq. 3.11.5.3-2)

Governing case.xls

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Rep. Checked by: KD 2/9/15

Pressure on T-WALL® Front Face - Static Cases

Backslope Case I: Broken backslope and Traffic Surcharge

 $\gamma = 120$ pcf $\phi = 34$ deg. Ka = 0.3109 Ka * $\gamma = 37.308$ psf/ft

Earth Pressure = $Ka * \gamma * h$ Live Load surharge = Ka * 240 psf

_		Earth Pressure	Live Load	STRENGTH-I	SERVICE-I
	h	(EH)	Surcharge (LS)	1.5EH+1.75LS	1.0EH+1.0LS
_	(ft)	(psf)	(psf)	(psf)	(psf)
Top of wall	0	0	75	131	75
Top of TOP unit	2.5	93	75	270	168
Bottom of 5.0' high TOP unit	7.5	280	75	550	354
Bottom of 6.0' high TOP unit	8.5	317	75	606	392
Bottom of 7.0' high TOP unit	9.5	354	75	662	429

Note: h=2.5' is the top of TOP unit

Structural Calculations STD 5.5' High Top Units

Loading: Slope Condition with Traffic Surcharge

Select Backfill Parameters: $\emptyset = 34^{\circ}$, $\gamma = 120$ pcf, Ka = 0.3109 Traffic Surcharge = 240 psf

1. 5.5 x 5.0 x 2.5 (Face Height x Width x Stem Height)

Project No.: TW4437 Calculated by: KB 02/09/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 02/09/15

Note: STD TOP UNIT

FRONT VIEW (STD TOP UNIT)

Project No.: TW4437 Calculated by: KB 02/09/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 02/09/15

Note: STD TOP UNIT

TOP VIEW (STD TOP UNIT)

Project No.: TW

TW4437

Project Name: I-89 Bridge Decks Replacement

Calculated by:

KB KD 2/9/15 2/9/15

Checked by:

FRONT VIEW

SECTION VIEW

TOP VIEW

FIGURE 11 TOP UNIT

NOT TO SCALE

Page 9

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $5.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Slope Condition and traffic surcharge

Design Parameters

Width of front face
$$b = 5$$
 ft
Height of stem $Hs = 2.5$ ft
Thickness of stem $ts = 0.5$ ft

From grade to top of unit
$$H_2 = 0$$
 from grade to top of unit $H_2 = 0$

From grade to bottom of unit
$$H = 5.5$$
 ft
From top of unit to top of stem $H_1 = 3$ ft
 $Havg = H-a/2 = 2.75$ ft

Unfactored forces due to earth pressure (EH)

Section A-A

Top 5.5'x5'x6',Slope Condition.xls

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Section B-B

Cantilever span
$$(l) = 1.75$$
 ft

Moment
$$M_a = 0.5 \text{ a } \sigma_{aavg} \text{ l}^2 = \frac{864.06}{10.37} \text{ lbs*ft}$$
 kips*in.

Shear
$$V_a = a \sigma_{aavg} I = 987.50$$
 lbs kips

Section C-C

Tension
$$T_a = \sigma_{aavg}$$
 (a b - Hs ts) = 2.69 kips

Moment

$$\begin{array}{l} \text{M}_{a} = \sigma_{a2} \; (\text{a b -Hs ts}) (\text{a/2-Hs/2}) \; + \\ 0.5 (\sigma_{a} - \sigma_{a2}) (\text{a b - Hs ts}) (\text{a/3-Hs/2}) = & 1.57 & \text{kips*ft} \\ = & 18.85 & \text{kips*in} \end{array}$$

Section D-D

Moment

$$M_a = b \sigma_{a2} H_1^2 / 2 + 0.5 b (\sigma_{a1} - \sigma_{a2}) H_1^2 / 3 = 839.43$$
 | lbs*ft | kips*in.

Shear

Project No.: Calculated by: TW4437 KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: **KD** 2/9/15

Unfactored forces due to traffic surcharge (LS)

$$\sigma_{t} = K_{a} \ q_{t} = \boxed{74.62} \ psf$$

$$Section A-A$$

$$Cantilever span (i) = \boxed{2.25} \ ft$$

$$Moment$$

$$M_{t} = 0.5 \ a \ \sigma_{t} \ l^{2} = \boxed{1038.79} \ lbs^{*}ft \ kips^{*}in.$$

$$Shear$$

$$V_{t} = a \ \sigma_{t} \ l = \boxed{923.37} \ lbs \ kips$$

$$Section B-B$$

$$Cantilever span (i) = \boxed{1.75} \ ft$$

$$Moment$$

$$M_{t} = 0.5 \ a \ \sigma_{t} \ l^{2} = \boxed{628.41} \ lbs^{*}ft \ kips^{*}in.$$

$$Shear$$

$$V_{t} = a \ \sigma_{t} \ l = \boxed{718.18} \ lbs \ kips^{*}ft.$$

$$Section C-C$$

$$Tension$$

$$T_{t} = \sigma_{t} \ (a \ b - Hs \ ts) = \boxed{1.96} \ kips$$

$$Moment$$

$$M_{t} = T_{t} \ (a/2-Hs/2) = \boxed{2.94} \ kips^{*}ft.$$

$$Section D-D$$

$$Moment$$

$$M_{t} = b \ \sigma_{t} \ H_{1}^{2}/2 = \boxed{1678.86} \ lbs^{*}ft.$$

$$Shear$$

$$V_{t} = b \ \sigma_{t} \ H_{1}^{2}/2 = \boxed{1678.86} \ lbs^{*}ft.$$

$$Shear$$

$$V_{t} = b \ \sigma_{t} \ H_{1} = \boxed{1119.24} \ lbs$$

$$= \boxed{1.12} \ kips^{*}in.$$

kips

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KΒ 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: 5.5'(H) x 5'(W) x 6'(Stem) top Unit,

Section A-A

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	17.14	1.50	25.71	kips*in.
Traffic Surcharge LS	12.47	1.75	21.81	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M =	29 61	Mu =	47 52	kins*in

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.27	1.50	1.90	kips
Traffic Surcharge LS	0.92	1.75	1.62	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	3.52	kips

Section parameters

b =	66	in.	Use the effective height for b
h =	6	in.	h is the overall thickness
d =	3.75	in.	d=6-2-4/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 47.52$ kips*in.

Bar Qnty & Size =
$$4$$
, #4 + 2, #5 (4 of 6 H-1 bars within effective height + 2 TB-1 bars)

As = 1.42 (in.^2)

 ρ = 0.00574

 ρ = 0.00574

 ρ = 275.90 (kips*in.)

 ρ = 0K

Project No.: TW4437 Calculated by: KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 255.02 kips*in.
øMn > 1.2 Mcr

Therefore,
$$As = 1.42$$
 in 2 Actually, Use $4, \#4 + 2, \#5$ $As = 1.42$ in 2

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.38$ in.
 $c/d = 0.10$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 3.52$ kips

Per AASHTO Article 5.8.3.4,
$$\ \beta = \ bv = \ 66.00 \ in.$$

$$dv = Mn/(Asfy) = \ 3.60 \ in.$$

$$0.25*fc'*bv*dv = \ 296.85 \ kips$$

$$Vc=0.0316*\beta*sqrt(fc')*bv*dv = \ 33.56 \ kips$$
Shear reinforcement $Av = \ 0.22 \ in^2 \ deg.$

$$Vs = Av*fy*sin(\alpha) = \ 9.33 \ kips$$

$$\emptyset Vn = \emptyset* min(Vc+Vs,0.25*fc'*bv*dv) = \ 38.60 \ kips$$

$$>= Vu \ OK$$

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Τe

ensile stress at service limit state		_
Moment at service limit state M =	29.61	kips*in
Reinforcing ratio $\rho = As/(bd) =$	0.0057	(dimensionless)
Modulus ratio $n = Es/Ec =$	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.91	(dimensionless)
Steel tensile stress $fss = M/(As*j*d) =$	6.09	ksi
Exposure Class =	1	
$\gamma_{e} =$	1.00	
dc =	2.25	in.
$\beta_s = 1 + dc/[0.7(h-dc)] =$	1.86	
$s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc =$	57.41	in. (AASHTO 5.7.3.4-1)

s _{max} <=	24.00	in.	
Actually, rebar spacing =	11.00	in.	OK

24.00

lin.

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $5.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section B-B

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	10.37	1.50	15.55	kips*in.
Traffic Surcharge LS	7.54	1.75	13.20	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M=	17.91	Mu =	28.75	kips*in.

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	0.99	1.50	1.48	kips
Traffic Surcharge LS	0.72	1.75	1.26	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	2.74	kips

Section parameters

		_	
b =	66	in.	Use the effective height for b
h =	6	in.	h is the overall thickness
d =	3.75	in.	d=6-2-4/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 28.75$ kips*in.

Bar Qnty & Size =
$$4$$
, #4 + 2, #5 (4 of 6 H-1 bars within effective height + 2 TB-1 bars)

As = 1.42 (in.^2)

 ρ = 0.00574

 ρ = 0.00574

 ρ = 275.90 (kips*in.)

 ρ = 0K

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 255.02 kips*in.
øMn > 1.2 Mcr

Therefore,
$$As = 1.42$$
 in 2 Actually, Use $4, \#4 + 2, \#5$ $As = 1.42$ in 2

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.38$ in.
 $c/d = 0.10$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 2.74$ kips

Per AASHTO Article 5.8.3.4,
$$\beta = \frac{2.00}{\text{bv}} = \frac{66.00}{\text{in.}}$$
 in.
$$\frac{\text{dv} = \text{Mn/(Asfy)} = 3.60}{0.25 \text{*fc'*bv*dv}} = \frac{296.85}{\text{kips}} = \frac{\text{Vc} = 0.0316 \text{*}\beta \text{*sqrt(fc')*bv*dv}}{\text{sq.}} = \frac{3.56}{\text{kips}} = \frac{\text{Vm} \cdot \text{Vc} \cdot \text{Vc} \cdot \text{Vm} \cdot \text{Vm}}{\text{sq.}} = \frac{30.20}{\text{kips}} = \frac{\text{Vm} \cdot \text{Vm} \cdot \text{Vm}}{\text{sq.}} = \frac{\text{Vm} \cdot \text{Vm}}{\text{sq.}} = \frac{\text{Vm}}{\text{sq.}} = \frac{\text{Vm}}{\text{sq.}}$$

Per AASHTO Article 5.8.2.4, No Transverse reinforcement is required if either of the following is true:

TRUE	(a) 0.5*øVc =	15.10	kips >= Vu
TRUE	(b) The analyzed r	nember is a sl	ab, footing, or culvert

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Tensile stress at service limit state

crisic seress at service infine state		_
Moment at service limit state M =	17.91	kips*in
Reinforcing ratio $\rho = As/(bd) =$	0.0057	(dimensionless)
Modulus ratio n = Es/Ec =	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.91	(dimensionless)
Steel tensile stress $fss = M/(As*j*d) =$	3.68	ksi
		-

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $5.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section C-C

Load combination - STRENGTH I

Tension

	Unfactored T	Load factor	Factored T	
Earth Pressure EH	2.69	1.5	4.04	kips
Traffic Surcharge LS	1.96	1.75	3.43	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total) $T =$	4 65	Tu =	7.47	kins

Moment

			F . IT	
	Unfactored T	Load factor	Factored T	
Earth Pressure EH	18.85	1.5	28.28	kips*in
Traffic Surcharge LS	35.26	1.75	61.70	kips*in
Collision force	#N/A	#N/A	0.00	kips*in
Loads 4	#N/A	#N/A	0.00	kips*in
Loads 5	#N/A	#N/A	0.00	kips*in
(Total) M =	54.11	Mu =	89.98	kins*in

Section parameters

b =	6	in.
h =	22	in.
d =	19	in.
fc =	5	ksi
fv =	60	ksi

h is the overall depth minus blockouts

Strength Check - Moment & Tension Interaction

Resistance factor $\emptyset = 0.90$ Factored Tu = 7.47 kips Factored Mu = 89.98 kips*in

no. of layers of rebar = 2

Bars / ea. layer = 2, #5

As / ea. layer = 0.62 (in.^2) ρ = 0.00544

To=Ø fy (#As) = 66.96 kips

Mo= \emptyset Mn= \emptyset As fy d(1- ρ fy/(1.7fc'))= 611.70 kips*in.

Is (Tu, Mu) inside the P-M Interaction
Diagram?

TRUE

Strength is OK

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Use superposition to compute tensile stress approximately.

Tension at service limit state T =	4.65	kips
Tensile stress by tension $fs1 = T/(\#As) =$	3.75	ksi
		_
Moment at service limit state M =	54.11	kips*in
Reinforcing ratio $\rho = As/(bd) =$	0.0054	(dimensionless)
Modulus ratio $n = Es/Ec =$	8	(dimensionless)
Parameter j=1-(sqrt(2ρn+(ρn)^2)-ρn)/3 =	0.92	(dimensionless)
Tensile stress by moment $fs2 = M/(As*j*d) = $	5.02	ksi
		_
Total tensile steel stress fss = fs1+fs2 =	8.77	ksi
		-
Exposure Class =	1	
γ_{e} =	1.00	
dc =	3.0	in. Use min. concrete cover)
$\beta_s = 1 + dc/[0.7(h-dc)] =$	1.23	
$s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc =$	59.12	in. (AASHTO 5.7.3.4-1)
s _{max} <=	24.00	in. (DM4 5.10.3.2)
		_
Actually, rebar spacing =	16.00	in. OK

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $5.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section D-D

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	10.07	1.50	15.11	kips*in.
Traffic Surcharge LS	20.15	1.75	35.26	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M =	30.22	Mu =	50.37	kips*in.

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	0.84	1.50	1.26	kips
Traffic Surcharge LS	1.12	1.75	1.96	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	3.22	kips

Section parameters

b =	60	in.	
h =	6	in.	h is the overall thickness
d =	3.19	in.	d=6-2-4/8-5/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 50.37$ kips*in.

Bar Qnty & Size =
$$6, \#5$$
 (6 V-2 bars)
As = 1.86 (in.^2)
 ρ = 0.00972
 \emptyset Mn= \emptyset *As*fy*d(1- ρ *fy/(1.7fc')) = 298.42 (kips*in.)
 \emptyset Mn >= Mu OK

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315 \text{ ksi} \\ 1.2 \text{ Mcr} = 1.2 \text{ fr}*S = 1.2 \text{ fr}*(bh^2/6) = 231.84 \text{ kips}*in.} \\ & \text{ØMn} > 1.2 \text{Mcr} \\ & \text{Therefore,} \qquad \text{As} = 1.86 \text{ in}^2$$

Therefore, As = 1.86 in
2

Actually, Use 6, #5 As = 1.86 in 2

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.55$ in.
 $c/d = 0.17$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 3.22$ kips

Per AASHTO Article 5.8.3.4,
$$\beta = \frac{2.00}{\text{bv}} = \frac{60.00}{\text{in.}}$$

 $dv = Mn/(Asfy) = \frac{2.97}{\text{in.}}$
 $0.25 \text{*fc'*bv*dv} = \frac{222.84}{\text{kips}}$
 $Vc = 0.0316 \text{*}\beta \text{*sqrt(fc')*bv*dv} = \frac{25.19}{\text{kips}}$
 $\emptyset \text{Vn} = \emptyset \text{*min(Vc,} 0.25 \text{*fc'*bv*dv}) = \frac{22.67}{\text{kips}} \text{*ps} >= \text{Vu, OK}$

Per AASHTO Article 5.8.2.4, No Transverse reinforcement is required if either of the following is true:

TRUE	(a) 0.5*øVc =	11.34	kips >= Vu
TRUE	(b) The analyzed n	nember is a sla	b, footing, or culvert

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Tensile stress at service limit state

crisic stress at service infine state		
Moment at service limit state M =	30.22	kips*in
Reinforcing ratio ρ = As/(bd) =	0.0097	(dimensionless)
Modulus ratio n = Es/Ec =	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.89	(dimensionless)
Steel tensile stress $fss = M/(As*j*d) =$	5.71	ksi

Structural Calculations STD 6.0' High Top Units

Loading: Slope Condition with Traffic Surcharge

Select Backfill Parameters: $\emptyset = 34^{\circ}$, $\gamma = 120$ pcf, Ka = 0.3109 Traffic Surcharge = 240 psf

2. $6.0 \times 5.0 \times 2.5$ (Face Height x Width x Stem Height)

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.0'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Slope Condition and traffic surcharge

Design Parameters

Traffic surchage
$$(q_t) = 240$$
 psf

Height of unit
$$a = 6$$
 ft
Width of front face $b = 5$ ft
Height of stem $Hs = 2.5$ ft
Thickness of stem $ts = 0.5$ ft

From grade to top of unit
$$H_2 = 0$$
 f

From grade to bottom of unit
$$H = 6$$
 ft
From top of unit to top of stem $H_1 = 3.5$ ft
Havg = H-a/2 = 3 ft

Unfactored forces due to earth pressure (EH)

Section A-A

Top 6'x5'x6', Slope Condition.xls

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Section B-B

Cantilever span
$$(l) = 1.75$$
 ft

Moment
$$M_a = 0.5 \text{ a } \sigma_{aavg} \text{ l}^2 = 1028.30 \text{ lbs*ft}$$

= 12.34 kips*in.

Shear
$$V_a = a \sigma_{aavg} I = 1175.20$$
 lbs kips

Section C-C

Tension
$$T_a = \sigma_{aavg}$$
 (a b - Hs ts) = 3.22 kips

Moment

$$\begin{array}{l} \text{M}_{a} = \sigma_{a2} \; (\text{a b -Hs ts}) (\text{a/2-Hs/2}) \; + \\ 0.5 (\sigma_{a} - \sigma_{a2}) (\text{a b - Hs ts}) (\text{a/3-Hs/2}) = & 2.41 & \text{kips*ft} \\ = & 28.96 & \text{kips*in} \end{array}$$

Section D-D

Moment

$$M_a = b \sigma_{a2} H_1^2/2 + 0.5 b (\sigma_{a1} - \sigma_{a2}) H_1^2/3 = 1332.98$$
 | lbs*ft | kips*in.

Shear

Top 6'x5'x6', Slope Condition.xls

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Unfactored forces due to traffic surcharge (LS)

Shear

$$\sigma_{t} = K_{a} \ q_{t} = \boxed{74.62} \ psf$$

$$Section A-A$$

$$Cantilever span (i) = \boxed{2.25} \ ft$$

$$Moment$$

$$M_{t} = 0.5 \ a \ \sigma_{t} \ |^{2} = \boxed{1133.23} \ lbs^{*}ft$$

$$= \boxed{13.60} \ kips^{*}in.$$

$$Shear$$

$$V_{t} = a \ \sigma_{t} \ |^{2} = \boxed{1007.32} \ lbs$$

$$= \boxed{1.01} \ kips$$

$$Section B-B$$

$$Cantilever span (i) = \boxed{1.75} \ ft$$

$$Moment$$

$$M_{t} = 0.5 \ a \ \sigma_{t} \ |^{2} = \boxed{685.53} \ lbs^{*}ft$$

$$= \boxed{8.23} \ kips^{*}in.$$

$$Shear$$

$$V_{t} = a \ \sigma_{t} \ |^{2} = \boxed{783.47} \ lbs$$

$$= \boxed{0.78} \ kips$$

$$Section C-C$$

$$Tension$$

$$T_{t} = \sigma_{t} \ (a \ b - Hs \ ts) = \boxed{2.15} \ kips$$

$$Moment$$

$$M_{t} = T_{t} \ (a/2-Hs/2) = \boxed{3.75} \ kips^{*}ft$$

$$= \boxed{45.05} \ kips^{*}ft$$

$$= \boxed{27.42} \ lbs^{*}ft$$

$$= \boxed{27.42} \ lbs^{*}ft$$

 $V_t = b \sigma_t H_1 = 1305.78$ = 1.31

lbs

kips

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KΒ 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: 6.0'(H) x 5'(W) x 6'(Stem) top Unit,

Section A-A

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	20.40	1.50	30.60	kips*in.
Traffic Surcharge LS	13.60	1.75	23.80	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M=	34 00	Mii =	54 40	kins*in

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.51	1.50	2.27	kips
Traffic Surcharge LS	1.01	1.75	1.76	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	4.03	kips

Section parameters

_		_	
b =	60	in.	Use the effective height for b
h =	6	in.	h is the overall thickness
d =	3.75	in.	d=6-2-4/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 54.40$ kips*in.

Bar Qnty & Size =
$$4$$
, #4 + 2, #5 (4 of 6 H-1 bars within effective height + 2 TB-1 bars)

As = 1.42 (in.^2)

 ρ = 0.00631

 ρ = 0.00631

 ρ = 274.74 (kips*in.)

 ρ = 0K

Project No.: TW4437 Calculated by: KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 231.84 kips*in.
 $gMn > 1.2Mcr$
Therefore, As = 1.42 in^2

Therefore, As = 1.42 in
2

Actually, Use 4, #4 + 2, #5 As = 1.42 in 2

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.42$ in.
 $c/d = 0.11$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 4.03$ kips

Per AASHTO Article 5.8.3.4,
$$\ \beta = bv = 60.00 \ bv = 60.00 \ in.$$

$$dv = Mn/(Asfy) = 3.58 \ in.$$

$$0.25*fc'*bv*dv = 268.72 \ kips$$

$$Vc=0.0316*\beta*sqrt(fc')*bv*dv = 30.38 \ kips$$

$$Shear reinforcement Av = 0.22 \ in^2 (2, \#3 S-1 bar)$$

$$\alpha = 45.00 \ deg.$$

$$Vs = Av*fy*sin(\alpha) = 9.33 \ kips$$

$$\emptyset Vn = \emptyset* min(Vc+Vs, 0.25*fc'*bv*dv) = 35.74 \ kips$$

$$>= Vu \ OK$$

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

T

Γensile stress at service limit state		_
Moment at service limit state M =	34.00	kips*in
Reinforcing ratio $\rho = As/(bd) =$	0.0063	(dimensionless)
Modulus ratio n = Es/Ec =	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.91	(dimensionless)
Steel tensile stress $fss = M/(As*j*d) =$	7.02	ksi
_		_
Exposure Class =	1	
$\gamma_{e} =$	1.00	
dc =	2.25	in.
$\beta_s = 1 + dc/[0.7(h-dc)] =$	1.86	
$s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc =$	49.20	in. (AASHTO 5.7.3.4-1)

s _{max} <=	24.00	in.	
Actually, rebar spacing =	11.00	in.	OK

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KΒ 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: 2/9/15 KD

Note: 6.0'(H) x 5'(W) x 6'(Stem) top Unit,

Section B-B

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	12.34	1.50	18.51	kips*in.
Traffic Surcharge LS	8.23	1.75	14.40	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M=	20 57	Mu =	32 91	kins*in

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.18	1.50	1.76	kips
Traffic Surcharge LS	0.78	1.75	1.37	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	3.13	kips

Section parameters

		_	
b =	60	in.	Use the effective height for b
h =	6	in.	h is the overall thickness
d =	3.75	in.	d=6-2-4/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 32.91$ kips*in.

Bar Qnty & Size =
$$4$$
, #4 + 2, #5 (4 of 6 H-1 bars within effective height + 2 TB-1 bars)

As = 1.42 (in.^2)

 ρ = 0.00631

 ρ = 0.00631

 ρ = 274.74 (kips*in.)

 ρ = 0K

Project No.: TW4437 Calculated by: KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 231.84 kips*in.
øMn > 1.2 Mcr

Therefore,
$$As = 1.42$$
 in 2 Actually, Use $4, \#4 + 2, \#5$ $As = 1.42$ in 2

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.42$ in.
 $c/d = 0.11$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 3.13$ kips

Per AASHTO Article 5.8.3.4,
$$\beta = \frac{2.00}{\text{bv}} = \frac{60.00}{\text{in.}}$$

 $dv = Mn/(Asfy) = \frac{3.58}{\text{in.}}$
 $0.25 \text{*fc'*bv*dv} = \frac{268.72}{\text{kips}}$
 $Vc = 0.0316 \text{*}\beta \text{*sqrt(fc')*bv*dv} = \frac{30.38}{\text{volume}} = \frac{30.38}$

Per AASHTO Article 5.8.2.4, No Transverse reinforcement is required if either of the following is true:

TRUE	(a) 0.5*øVc =	13.67	kips >= Vu
TRUE	(b) The analyzed r	member is a slak	, footing, or culvert

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Tensile stress at service limit state

ensile stress at service limit state		_
Moment at service limit state M =	20.57	kips*in
Reinforcing ratio $\rho = As/(bd) =$	0.0063	(dimensionless)
Modulus ratio n = Es/Ec =	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.91	(dimensionless)
Steel tensile stress fss = M/(As*j*d) =	4.25	ksi
_		•
Exposure Class =	1	

-		_	
Actually, rebar spacing =	11.00	in.	OK

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KΒ 2/9/15 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD

Note: 6.0'(H) x 5'(W) x 6'(Stem) top Unit,

Section C-C

Load combination - STRENGTH I

Tension

	Unfactored T	Load factor	Factored T	
Earth Pressure EH	3.22	1.5	4.83	kips
Traffic Surcharge LS	2.15	1.75	3.75	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total) $T =$	5.36	Tu =	8.58	kips

Moment

	Unfactored T	Load factor	Factored T	
Earth Pressure EH	28.96	1.5	43.44	kips*in
Traffic Surcharge LS	45.05	1.75	78.84	kips*in
Collision force	#N/A	#N/A	0.00	kips*in
Loads 4	#N/A	#N/A	0.00	kips*in
Loads 5	#N/A	#N/A	0.00	kips*in
(Total) M =	74.01	Mu =	122.28	kins*in

74.01 (lotal) M =

Section parameters

b =22 h = in. 19 d = in. 5 fc = ksi 60 ksi fy =

h is the overall depth minus blockouts

Strength Check - Moment & Tension Interaction

Resistance factor ø = 0.90 Factored Tu = 8.58 kips Factored Mu = 122.28 kips*in

no. of layers of rebar = Bars / ea. layer = 2, #5 As / ea. layer = 0.62 (in.^2) 0.00544 To= \emptyset fy (#As) = 66.96 kips

Mo= \emptyset Mn= \emptyset As fy d(1- ρ fy/(1.7fc'))= 611.70 kips*in.

Is (Tu, Mu) inside the P-M Interaction TRUE Diagram? Strength is OK Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Use superposition to compute tensile stress approximately.

Tension at service limit state $T = T$ Tensile stress by tension $ts1 = T/(\#As) = T$	5.36 4.33	kips ksi	
Tensile stress by tension is $1 - 17(\pi As) = 1$	7.55	INSI	
Moment at service limit state M =	74.01	kips*in	
Reinforcing ratio ρ = As/(bd) =	0.0054	(dimensionless)	
Modulus ratio $n = Es/Ec =$	8	(dimensionless)	
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.92	(dimensionless)	
Tensile stress by moment $fs2 = M/(As^*j^*d) =$	6.87	ksi	
Total tensile steel stress fss = fs1+fs2 =	11.19	ksi	
Exposure Class =	1		
$\gamma_{e} =$	1.00		
dc =	3.0	in. Use m	nin. concrete cover)
$\beta_s = 1 + dc/[0.7(h-dc)] =$	1.23		
$s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc =$	45.04	in. (AASI	HTO 5.7.3.4-1)
s _{max} <=	24.00	in. (DM4	5.10.3.2)
Actually, rebar spacing =	16.00	in. OK	

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.0'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section D-D

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	16.00	1.50	23.99	kips*in.
Traffic Surcharge LS	27.42	1.75	47.99	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M=	43.42	Mu =	71.98	kips*in.

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.14	1.50	1.71	kips
Traffic Surcharge LS	1.31	1.75	2.29	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	4.00	kips

Section parameters

b =	60	in.	
h =	6	in.	h is the overall thickness
d =	3.19	in.	d=6-2-4/8-5/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 71.98$ kips*in.

Bar Qnty & Size =
$$6, \#5$$
 (6 V-2 bars)
As = 1.86 (in.^2)
 ρ = 0.00972
 \emptyset Mn= \emptyset *As*fy*d(1- ρ *fy/(1.7fc')) = 298.42 (kips*in.)
 \emptyset Mn >= Mu OK

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 231.84 kips*in.
øMn > 1.2Mcr

Therefore, $As = 1.86 \text{ in}^2$ Actually, Use 6, #5 $As = 1.86 \text{ in}^2$

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.55$ in.
 $c/d = 0.17$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 4.00$ kips

Per AASHTO Article 5.8.3.4,
$$\beta = \frac{2.00}{\text{bv}} = \frac{60.00}{\text{in.}}$$

 $dv = Mn/(Asfy) = \frac{2.97}{\text{in.}}$
 $0.25 \text{*fc'*bv*dv} = \frac{222.84}{\text{kips}}$
 $Vc = 0.0316 \text{*}\beta \text{*sqrt(fc')*bv*dv} = \frac{25.19}{\text{kips}}$
 $\emptyset \text{Vn} = \emptyset \text{*min(Vc,} 0.25 \text{*fc'*bv*dv}) = \frac{22.67}{\text{kips}} \text{*ps} >= \text{Vu, OK}$

Per AASHTO Article 5.8.2.4, No Transverse reinforcement is required if either of the following is true:

TRUE	(a) 0.5*øVc =	11.34	kips >= Vu
TRUE	(b) The analyzed i	member is a slab,	footing, or culvert

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Tensile stress at service limit state

Moment at service limit state M =	43.42	kips*in
Reinforcing ratio ρ = As/(bd) =	0.0097	(dimensionless)
Modulus ratio $n = Es/Ec =$	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.89	(dimensionless)
Steel tensile stress fss = M/(As*j*d) =	8.20	ksi

Structural Calculations STD 6.5' High Top Units

Loading: Slope Condition with Traffic Surcharge

Select Backfill Parameters: $\emptyset = 34^{\circ}$, $\gamma = 120$ pcf, Ka = 0.3109 Traffic Surcharge = 240 psf

3. $6.5 \times 5.0 \times 2.5$ (Face Height x Width x Stem Height)

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Slope Condition and traffic surcharge

Design Parameters

Height of unit
$$a = 6.5$$
 ft

Width of front face $b = 5$ ft

Height of stem $Hs = 2.5$ ft

Thickness of stem $ts = 0.5$ ft

From grade to top of unit
$$H_2 = 0$$
 ft

From grade to bottom of unit H =	6.5	ft
From top of unit to top of stem $H_1 =$	4	ft
Havg = H-a/2 =	3.25	ft

Unfactored forces due to earth pressure (EH)

Section A-A

Top 6.5'x5'x6',Slope Condition.xls

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Section B-B

Cantilever span
$$(l) = 1.75$$
 ft

Moment
$$M_a = 0.5 \text{ a } \sigma_{aavg} \text{ l}^2 = 1206.83 \text{ lbs*ft}$$

= 14.48 kips*in.

Shear
$$V_a = a \sigma_{aavg} I = 1379.23$$
 lbs kips

Section C-C

Tension
$$T_a = \sigma_{aavg}$$
 (a b - Hs ts) = 3.79 kips

Moment

$$\begin{array}{l} \text{M}_{a} = \sigma_{a2} \; (\text{a b -Hs ts}) (\text{a}/\text{2-Hs/2}) \; + \\ 0.5 (\sigma_{a} - \sigma_{a2}) (\text{a b - Hs ts}) (\text{a}/\text{3-Hs/2}) = \boxed{ 3.47 \\ = \boxed{ 41.68 } \text{kips*in} \end{array}$$

Section D-D

Moment

$$M_a = b \sigma_{a2} H_1^2 / 2 + 0.5 b (\sigma_{a1} - \sigma_{a2}) H_1^2 / 3 = 1989.76$$
 | lbs*ft | kips*in.

Shear

$$V_a = b (\sigma_{a1} + \sigma_{a2}) H_1/2 = 1492.32$$
 lbs kips.

Project No.: Calculated by: TW4437 KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: **KD** 2/9/15

Unfactored forces due to traffic surcharge (LS)

kips

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section A-A

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	23.94	1.50	35.91	kips*in.
Traffic Surcharge LS	14.73	1.75	25.78	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M =	38.67	Mu =	61.69	kips*in.

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.77	1.50	2.66	kips
Traffic Surcharge LS	1.09	1.75	1.91	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	4.57	kips

Section parameters

-			
b =	78	in.	Use the effective height for b
h =	6	in.	h is the overall thickness
d =	3.75	in.	d=6-2-4/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 61.69$ kips*in.

Bar Qnty & Size =
$$4$$
, #4 + 2, #5 (4 of 7 H-1 bars within effective height + 2 TB-1 bars)

As = 1.42 (in.^2)

 $\rho = 0.00485$
 $\phi = 0.00485$

Project No.: TW4437 Calculated by: KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 301.39 kips*in.

øMn<=1.2Mcr, increase 33%

Therefore, 1.89 in^2 Actually, Use 1.42 in^2 4, #4 + 2, #5As =

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.32$ in.
 $c/d = 0.09$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 4.57$ kips

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

ensile stress at service limit state		_
Moment at service limit state M =	38.67	kips*in
Reinforcing ratio ρ = As/(bd) =	0.0049	(dimensionless)
Modulus ratio $n = Es/Ec =$	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.92	(dimensionless)
Steel tensile stress fss = M/(As*j*d) =	7.90	ksi
-		•
Exposure Class =	1	
$\gamma_{e} =$	1.00	
dc =	2.25	in.

 $\beta_s = 1 + dc/[0.7(h-dc)] =$ 1.86 $s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc =$ 43.21 (AASHTO 5.7.3.4-1) lin. 24.00 in. s_{max} <=

10.25 Actually, rebar spacing = OK in.

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section B-B

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	14.48	1.50	21.72	kips*in.
Traffic Surcharge LS	8.91	1.75	15.60	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M =	23.39	Mu =	37.32	kips*in.

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.38	1.50	2.07	kips
Traffic Surcharge LS	0.85	1.75	1.49	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		Vu =	3.55	kips

Section parameters

_			
b =	78	in.	Use the effective height for b
h =	6	in.	h is the overall thickness
d =	3.75	in.	d=6-2-4/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 37.32$ kips*in.

Bar Qnty & Size =
$$4$$
, #4 + 2, #5 (4 of 7 H-1 bars within effective height + 2 TB-1 bars)

As = 1.42 (in.^2)

 ρ = 0.00485

 ρ = 0.00485

 ρ = 277.70 (kips*in.)

 ρ = 0K

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315 \text{ ksi} \\ 1.2 \text{ Mcr} = 1.2 \text{ fr*S} = 1.2 \text{ fr*(bh^2/6)} = 301.39 \text{ kips*in.} \\ \text{ØMn} <= 1.2 \text{Mcr}, \text{ increase } 33\%$$

ØMN<=1.2MCF, INCREASE 33%
Therefore As = 1.80 in A.2

Therefore, As = 1.89 in 2 Actually, Use 4, #4 + 2, #5 As = 1.42 in 2

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $61 = 0.8$
 $c = As*fy/(0.85*fc'*6_1*b) = 0.32$ in.
 $c/d = 0.09$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 3.55$ kips

Per AASHTO Article 5.8.3.4, 2.00 bv = 78.00 in. dv = Mn/(Asfy) =3.62 in. 0.25*fc'*bv*dv =353.10 kips Vc=0.0316*ß*sqrt(fc')*bv*dv = 39.92 kips $\emptyset Vn = \emptyset * min(Vc,0.25*fc'*bv*dv) =$ 35.93 kips

Per AASHTO Article 5.8.2.4, No Transverse reinforcement is required if either of the following is true:

TRUE](a) 0.5*øVc =	17.96	kips >= Vu
TRUE	(b) The analyzed r	nember is a sla	b, footing, or culvert

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Tensile stress at service limit state

onone ou ood at oor vice in the otate		_
Moment at service limit state M =	23.39	kips*in
Reinforcing ratio ρ = As/(bd) =	0.0049	(dimensionless)
Modulus ratio n = Es/Ec =	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.92	(dimensionless)
Steel tensile stress $fss = M/(As*j*d) =$	4.78	ksi

		1	Exposure Class =
		1.00	$\gamma_{e} =$
	in.	2.25	dc =
		1.86	$\beta_s = 1 + dc/[0.7(h-dc)] = $
(AASHTO 5.7.3.4-1)	in.	74.36	$s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc = $
(DM4 5.10.3.2)	in.	24.00	s _{max} <=
OK	in.	10.25	Actually, rebar spacing =

40

>= Vu, OK

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section C-C

Load combination - STRENGTH I

Tension

	Unfactored T	Load factor	Factored T	
Earth Pressure EH	3.79	1.5	5.68	kips
Traffic Surcharge LS	2.33	1.75	4.08	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total) $T=$	6.12	Tu =	9.76	kips

Moment

	Unfactored T	Load factor	Factored T	
Earth Pressure EH	41.68	1.5	62.52	kips*in
Traffic Surcharge LS	55.96	1.75	97.93	kips*in
Collision force	#N/A	#N/A	0.00	kips*in
Loads 4	#N/A	#N/A	0.00	kips*in
Loads 5	#N/A	#N/A	0.00	kips*in
(Total) $M =$	97.64	Mu =	160.45	kins*in

Section parameters

		_
b =	6	in.
h =	22	in.
d =	19	in.
fc =	5	ks
fy =	60	ks

h is the overall depth minus blockouts

Strength Check - Moment & Tension Interaction

Resistance factor $\emptyset = 0.90$ Factored Tu = 9.76 kips Factored Mu = 160.45 kips*in

no. of layers of rebar = 2Bars / ea. layer = 2, #5

As / ea. layer = 0.62 (in.^2) $\rho = 0.00544$ To=ø fy (#As) = 66.96 kips
Mo=øMn=ø As fy d(1- ρ fy/(1.7fc'))= 611.70 kips*in.

Is (Tu, Mu) inside the P-M Interaction

Diagram?

TRUE

Strength is OK

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Use superposition to compute tensile stress approximately.

Tension at service limit state $T = T$ Tensile stress by tension $fs1 = T/(\#As) = T$	6.12 4.94	kips ksi
Moment at service limit state M = Reinforcing ratio ρ = As/(bd) = Modulus ratio n = Es/Ec = Parameter j=1-(sqrt(2 ρ n+(ρ n)^2)- ρ n)/3 = Tensile stress by moment fs2 = M/(As*j*d) =	97.64 0.0054 8 0.92 9.06	kips*in (dimensionless) (dimensionless) (dimensionless) ksi
Total tensile steel stress fss = fs1+fs2 =	13.99]ksi
Exposure Class = γ_e =	1.00	
$dc = [8]$ $B_s = 1 + dc/[0.7(h-dc)] = [8]$	3.0 1.23	in. Use min. concrete cover)
$s_{max} = 700 \gamma_e / (\beta_s f_{ss}) - 2dc =$ $s_{max} <=$	34.82 24.00	in. (AASHTO 5.7.3.4-1) in. (DM4 5.10.3.2)
Actually, rebar spacing =	16.00	in. OK

Revised BZY 6/3/2011

Project No.: TW4437 Calculated by: KB 2/9/15
Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Note: $6.5'(H) \times 5'(W) \times 6'(Stem)$ top Unit,

Section D-D

Load combination - STRENGTH I

Moment

	Unfactored M	Load factor	Factored M	Units
Earth Pressure EH	23.88	1.50	35.82	kips*in.
Traffic Surcharge LS	35.82	1.75	62.68	kips*in.
Collision force	#N/A	#N/A	0.00	kips*in.
Loads 4	#N/A	#N/A	0.00	kips*in.
Loads 5	#N/A	#N/A	0.00	kips*in.
(Total) M =	59.69	Mu =	98.49	kips*in.

Shear

	Unfactored V	Load factor	Factored V	Units
Earth Pressure EH	1.49	1.50	2.24	kips
Traffic Surcharge LS	1.49	1.75	2.61	kips
Collision force	#N/A	#N/A	0.00	kips
Loads 4	#N/A	#N/A	0.00	kips
Loads 5	#N/A	#N/A	0.00	kips
(Total)		VII =	4.85	kins

Section parameters

b =	60	in.	
h =	6	in.	h is the overall thickness
d =	3.19	in.	d=6-2-4/8-5/8/2
fc =	5	ksi	Concrete cover=2"
fy =	60	ksi	

Resistance factor
$$\emptyset = 0.90$$

Factored $Mu = 98.49$ kips*in.

Bar Qnty & Size =
$$6, \#5$$
 (6 V-2 bars)
As = 1.86 (in.^2)
 ρ = 0.00972
 ϕ Mn= ϕ *As*fy*d(1- ρ *fy/(1.7fc')) = 298.42 (kips*in.)
 ϕ Mn >= Mu OK

Project No.: TW4437 Calculated by: KB 2/9/15 Project Name: I-89 Bridge Decks Replacement Checked by: KD 2/9/15

Flexural Design (continued)

Check min. Reinforcement limit, Per AASHTO 5.7.3.3.2

$$fr = 0.24*sqrt(fc') = 0.536656315$$
 ksi
1.2 Mcr= 1.2 fr*S = 1.2 fr*(bh^2/6) = 231.84 kips*in.
øMn > 1.2 Mcr
Therefore As = 1.86 in^2

Therefore,
$$As = 1.86 \text{ in}^2$$

Actually, Use $6, \#5$ $As = 1.86 \text{ in}^2$

Check max. Reinforcement limit, Per AASHTO 5.7.3.3.1

$$fc' = 5$$
 ksi, so, $fb = 0.8$
 $c = As*fy/(0.85*fc'*fb_1*b) = 0.55$ in.
 $c/d = 0.17$ <=0.42, OK

Shear Design

Resistance factor
$$\emptyset = 0.9$$

Factored $Vu = 4.85$ kips

Per AASHTO Article 5.8.3.4,
$$\beta = \frac{2.00}{\text{bv}} = \frac{60.00}{\text{in.}}$$

$$dv = \text{Mn/(Asfy)} = \frac{2.97}{\text{in.}}$$

$$0.25 \text{*fc'*bv*dv} = \frac{222.84}{\text{kips}}$$

$$Vc = 0.0316 \text{*}\beta \text{*sqrt(fc')*bv*dv} = \frac{25.19}{\text{kips}}$$

$$\emptyset \text{Vn} = \emptyset \text{*min(Vc,} 0.25 \text{*fc'*bv*dv}) = \frac{22.67}{\text{kips}} \text{*ps} >= \text{Vu, OK}$$

Per AASHTO Article 5.8.2.4, No Transverse reinforcement is required if either of the following is true:

TRUE	(a) 0.5*øVc =	11.34	kips >= Vu
TRUE	(b) The analyzed r	nember is a sl	ab, footing, or culvert

Crack Control by Distribution of Reinforcement (AASHTO 5.7.3.4)

Tensile stress at service limit state

ensile stress at service inflit state		_
Moment at service limit state M =	59.69	kips*in
Reinforcing ratio $\rho = As/(bd) =$	0.0097	(dimensionless)
Modulus ratio n = Es/Ec =	8	(dimensionless)
Parameter j=1-(sqrt($2\rho n+(\rho n)^2$)- ρn)/3 =	0.89	(dimensionless)
Steel tensile stress fss = M/(As*j*d) =	11.28	ksi
		_
Evenous Class	1	i

